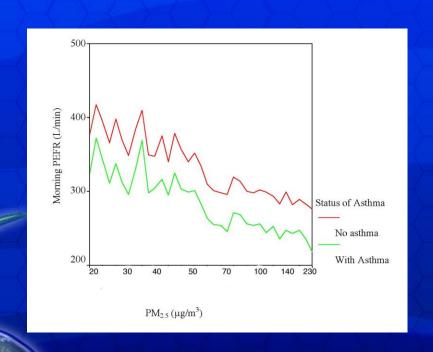


Major findings of the study

The results of the study show that there is a relationship between Peak Expiratory Flow Rate (PEFR - a measure of lung function) in both asthmatic and non-asthmatic children and PM_{10} and $PM_{2.5}$ concentrations.



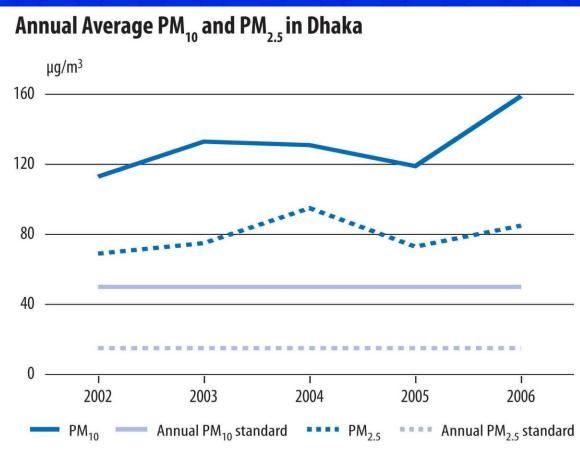
PEFR decreased when PM₁₀ increased

- PEFR decreased by about 40% in both asthmatic and non-asthmatic children when PM_{10} increased from its lowest level of 38 μ g/m³ to its highest daily mean of 385 μ g/m³.
- Asthmatic children had a 10% lower PEFR than non-asthmatic children
- This difference was maintained across the range of PM₁₀ concentrations.

PEFR decreased when PM_{2.5} increased

PEFR decreased by about 30% in both asthmatic and non-asthmatic children when PM_{10} increased from its lowest level of $18 \mu g/m^3$ to its highest daily mean of $233 \mu g/m^3$.

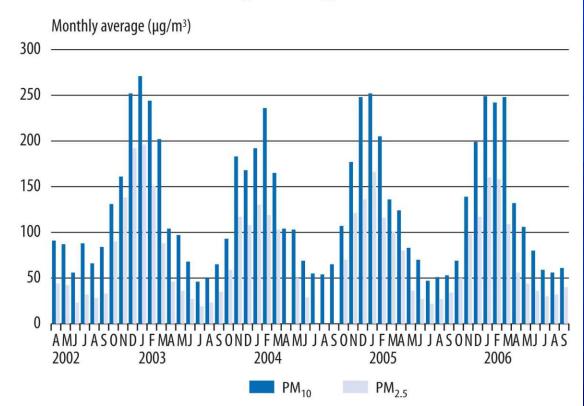
Some perspective - Comparison with adult female smokers and non-smokers - only 16% reduction


	PEFR L/min	
Non-	Range	330-340
smokers	Mean	332
Heavy	Range	270-300
smokers	Mean	280

Both groups were 100 women, 30-40 years old of similar height and weight from Nepal

Source: Prasad et al, 2003

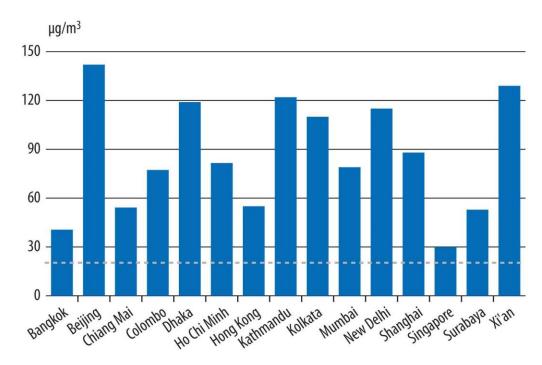
How high are PM levels in Dhaka?



 PM_{10} = particulate matter with a diameter of not more than 10 microns; $PM_{2.5}$ = particulate matter with a diameter of not more than 2.5 microns; $\mu g/m^3$ = micrograms per cubic meter Source: Nasiruddin, 2006.

Season variation in PM in Dhaka

Seasonal Variations in PM₁₀ and PM_{2.5} Concentrations



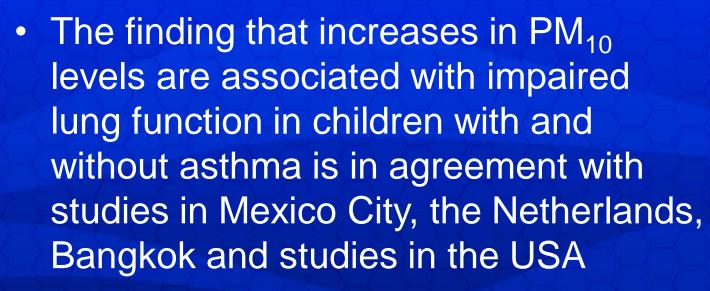
 PM_{10} = particulate matter with a diameter of not more than 10 microns; $PM_{2.5}$ = particulate matter with a diameter of not more than 2.5 microns; $\mu g/m^3$ = micrograms per cubic meter

Source: Nasiruddin, 2006.

Comparison of PM₁₀ in Dhaka with PM₁₀ in other Asian cities

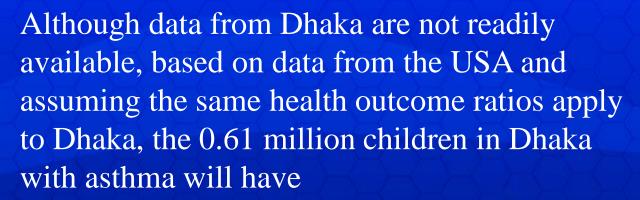
Note: WHO annual PM_{10} guideline value is $20~\mu g/m^3$ CAl—Asia = Clean Air Initiative for Asian Cities; PM_{10} = particulate matter with diameter not more than 10 microns; WHO = World Health Organization; $\mu g/m^3$ = micrograms per cubic meter Source: CAl- Asia, 2006a.

Sources of PM in Dhaka


Average Mass Contribution to Particulate Pollution in Dhaka, 1993–1994 (%)

Source Type	Coarse (PM ₁₀)	Fine (PM _{2.5})
Resuspended Soil	54.7 ± 2.4	8.88 ± 5.04
2-stroke engine	6.07 ± 1.8	2.03 ± 3.24
Construction works	7.09 ± 3.36	
Motor vehicles	31.2 ± 6.1	29.1 ± 4.6
Sea salt	0.22 ± 3.69	4.11 ± 2.48
Refuse burning	0.74 ± 5.96	
Natural gas/diesel burning		45.7 ± 8.3
Metal smelting		10.2 ± 8.1

 PM_{10} = particulate matter with a diameter of not more than 10 microns; $PM_{2.5}$ = particulate matter with a diameter of not more than 2.5 microns; % = percent Source: Biswas *et al.*, 2000.



The results are consistent with other studies

 The severity of the changes in PEFR with increases in PM is an important new finding

Impacts on children with asthma

- 12 million restricted activity days,
- 1.5 million school absence days, (2.48 days per child with asthma), and
- 51 school age children will die of asthma per year.

Children's Health Study in Southern California

A large long term study of 5500 children found:

- Air pollution harms children's lungs for life
- Children exposed to high levels of PM had significantly reduced lung growth and development. This may have permanent adverse effects in adulthood.
- Children with asthma and exposed to high PM were much more likely to develop bronchitis
- Children who moved from areas of high air pollution to areas with low air pollution showed some recovery in lung development
- Children who moved from areas of low air pollution to areas with high air pollution had decreased lung development

Conclusion

If ambient concentrations of PM₁₀ and PM₂₅ in Dhaka and similar cities could be reduced these harmful impacts on the respiratory health of children could be substantially decreased

Thanks to....

This Malé Declaration study on Health Impacts of Air Pollution was coordinated by UNEP RRCAP, Bangkok, Thailand and the Ministry of Environment and Forests, Government of Bangladesh.

It is a part of the RAPIDC programme coordinated by the Stockholm Environment Institute at York.

The study was generously financially supported by the Swedish International Development Cooperation Agency (Sida).

Thank you